INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Second Year, Second Semester, 2005-06 Statistics - II, Backpaper Examination

(15) 1. Let X_1, \ldots, X_n be independent random variables with densities

$$f_{X_i}(x_i|\theta) = \begin{cases} \frac{1}{2i\theta} & -i(\theta-1) < x_i < i(\theta+1) \\ 0 & \text{otherwise,} \end{cases}$$

where $\theta > 0$.

- (a) Find a two-dimensional sufficient statistic for θ .
- (b) Find the maximum likelihood estimator of θ .
- (7) 2. Suppose X_1 and X_2 are two i.i.d. observations from Binomial(n, p), 0 , <math>n known. Let $\theta = p^n$. Find the UMVUE of θ .
- (8) 3. Suppose X_1, X_2, \ldots, X_n is a random sample from $Poisson(\lambda)$. Consider testing

$$H_0: \lambda < 1 \text{ versus } H_1: \lambda > 1.$$

- (a) Show that the conditions required for the existence of a UMP test are satisfied here.
- (b) Derive the UMP test of level α .
- (20) 4. A large shipment of parts is received, out of which 5 are tested for defects. The number of defective parts in the sample, X is assumed to be Binomial with parameter θ . From past shipments it is known that θ has a Beta(1, 9) distribution.
- (a) Find the HPD estimate of θ if x = 0 is observed.
- (b) Find a 95% credible set for θ if x = 0 is observed.
- (c) Consider testing $H_0: \theta \leq 0.10$ versus $H_1: \theta > 0.10$. Find the posterior probability of H_0 and explain what can be concluded from this.